8 research outputs found

    Optimal color channel combination across skin tones for remote heart rate measurement in camera-based photoplethysmography

    Get PDF
    Objective: The heart rate is an essential vital sign that can be measured remotely with camera-based photoplethysmography (cbPPG). Systems for cbPPG typically use cameras that deliver red, green, and blue (RGB) channels. The combination of these channels has been proven to increase signal-to-noise ratio (SNR) and heart rate measurement accuracy (ACC). However, many combinations remain untested, the comparison of proposed combinations on large datasets is insufficiently investigated, and the interplay with skin tone is rarely addressed. Methods: Eight regions of interest and eight color spaces with a total of 25 color channels were compared in terms of ACC and SNR based on the Binghamton-Pittsburgh-RPI Multimodal Spontaneous Emotion Database (BP4D+). Additionally, two systematic grid searches were performed to evaluate ACC in the space of linear combinations of the RGB channels. Results: Glabella and forehead regions of interest provided highest ACC (up to 74.1 %) and SNR (> -3 dB) with the hue channel H from HSV color space and the chrominance channel Q from NTSC color space. The grid searches revealed a global optimum of linear RGB combinations (ACC: 79.2 %). This optimum occurred for all skin tones, although ACC dropped for darker skin tones. Conclusion: Through systematic grid searches we were able to identify the skin tone independent optimal linear RGB color combination for measuring heart rate with cbPPG. Our results proved on a large dataset that the identified optimum outperformed conventionally used color channels. Significance: The presented findings provide useful evidence for future considerations of algorithmic approaches for cbPPG

    Automatic Classification of Full- and Reduced-Lead Electrocardiograms Using Morphological Feature Extraction

    Get PDF
    Cardiovascular diseases are the global leading cause of death. Automated electrocardiogram (ECG) analysis can support clinicians to identify abnormal excitation of the heart and prevent premature cardiovascular death. An explainable classification is particularly important for support systems. Our contribution to the PhysioNet/CinC Challenge 2021 (team name: ibmtPeakyFinders) therefore pursues an approach that is based on interpretable features to be as explainable as possible. To meet the challenge goal of developing an algorithm that works for both 12-lead and reduced lead ECGs, we processed each lead separately. We focused on signal processing techniques based on template delineation that yield the template's fiducial points to take the ECG waveform morphology into account. In addition to beat intervals and amplitudes obtained from the template, various heart rate variability and QT interval variability features were extracted and supplemented by signal quality indices. Our classification approach utilized a decision tree ensemble in a one-vs-rest approach. The model parameters were determined using an extensive grid search. Our approach achieved challenge scores of 0.47, 0.47, 0.34, 0.40, and 0.41 on hidden 12-, 6-, 4-, 3-, and 2-lead test sets, respectively, which corresponds to the ranks 12, 10, 23, 18, and 16 out of 39 teams

    Topical negative pressure wound therapy enhances the local tissue perfusion – A pilot study

    Get PDF
    Background: Topical negative pressure wound therapy (TNPWT) is a regularly used method in modern wound treatment with a growing and diverse potential for clinical use. So far positive effects on microcirculation have been observed and examined, although precise statements on the underlying mechanism appear unsatisfying. Objective: The aim of our study was to extend the understanding of the effect of TNPWT on tissue perfusion and determine the time frame and the extent to which the tissue perfusion changes due to TNPWT. Material and methods: TNPWT was applied to the anterior thighs of 40 healthy individuals for 30 min, respectively. Before and up to 90 min after the application, measurements of the amount of regional haemoglobin (rHb), capillary venous oxygen saturation (sO2), blood flow (flow) and velocity were conducted with spectrophotometry (combining white light spectrometry and laser Doppler spectroscopy) within two different depths/skin layers. A superficial measuring probe for depths up to 3 mm and a deep measuring probe for up to 7 mm were used. Results: All parameters show significant changes after the intervention compared to baseline measurements. The greater effect was seen superficially. The superficially measured rHb, sO2 and flow showed a significant increase and stayed above the baseline at the end of the protocol. Whereas deeply measured, the rHb initially showed a decrease. The flow and sO2 showed a significant increase up to 60 min after the intervention. Conclusion: The application of TNPWT on healthy tissue shows an increase in capillary-venous oxygen saturation and haemoglobin concentration of at least 90 min after intervention. A possible use in clinical practice for preconditioning to enhance wound healing for high-risk patients to develop wound healing disorder, requires further studies to investigate the actual duration of the effect

    Camera-based assessment of cutaneous perfusion strength in a clinical setting

    Get PDF
    Objective. After skin flap transplants, perfusion strength monitoring is essential for the early detection of tissue perfusion disorders and thus to ensure the survival of skin flaps. Camera-based photoplethysmography (cbPPG) is a non-contact measurement method, using video cameras and ambient light, which provides spatially resolved information about tissue perfusion. It has not been researched yet whether the measurement depth of cbPPG, which is limited by the penetration depth of ambient light, is sufficient to reach pulsatile vessels and thus to measure the perfusion strength in regions that are relevant for skin flap transplants. Approach. We applied constant negative pressure (compared to ambient pressure) to the anterior thighs of 40 healthy subjects. Seven measurements (two before and five up to 90 min after the intervention) were acquired using an RGB video camera and photospectrometry simultaneously. We investigated the performance of different algorithmic approaches for perfusion strength assessment, including the signal-to-noise ratio (SNR), its logarithmic components logS and logN, amplitude maps, and the amplitude height of alternating and direct signal components. Main results. We found strong correlations of up to r = 0.694 (p < 0.001) between photospectrometric measurements and all cbPPG parameters except SNR when using the green color channel. The transfer of cbPPG signals to POS, CHROM, and O3C did not lead to systematic improvements. However, for direct signal components, the transformation to O3C led to correlations of up to r = 0.744 (p < 0.001) with photospectrometric measurements. Significance. Our results indicate that a camera-based perfusion strength assessment in tissue with deep-seated pulsatile vessels is possible

    Needs- and user-oriented development of contactless camera-based telemonitoring in heart disease-Results of an acceptance survey from the Home-based Healthcare Project (feasibility project).

    No full text
    Home-based telemonitoring in heart failure patients can reduce all-cause mortality and the relative risk of heart failure-related hospitalization compared to standard care. However, technology use depends, among other things, on user acceptance, making it important to include potential users early in development. In a home-based healthcare project (a feasibility project) a participatory approach was chosen in preparation for future development of contactless camera-based telemonitoring in heart disease patients. The project study patients (n = 18) were surveyed regarding acceptance and design expectations, and acceptance-enhancing measures and design suggestions were then drawn from the results. The study patients corresponded to the target group of potential future users. 83% of respondents showed high acceptance. 17% of those surveyed were more skeptical with moderate or low acceptance. The latter were female, mostly living alone, and without technical expertise. Low acceptance was associated with a higher expectation of effort and lower perception of self-efficacy and lower integratability into daily rhythms. For the design, the respondents found independent operation of the technology very important. Furthermore, concerns were expressed about the new measuring technology, e.g., anxiety about constant surveillance. The acceptance of a new generation of medical technology (contactless camera-based measuring technology) for telemonitoring is already quite high in the surveyed group of older users (60+). Specific user expectations concerning design should be considered during development to increase acceptance by potential users even more

    Assessment of the human response to acute mental stress-An overview and a multimodal study.

    No full text
    Numerous vital signs are reported in association with stress response assessment, but their application varies widely. This work provides an overview over methods for stress induction and strain assessment, and presents a multimodal experimental study to identify the most important vital signs for effective assessment of the response to acute mental stress. We induced acute mental stress in 65 healthy participants with the Mannheim Multicomponent Stress Test and acquired self-assessment measures (Likert scale, Self-Assessment Manikin), salivary α-amylase and cortisol concentrations as well as 60 vital signs from biosignals, such as heart rate variability parameters, QT variability parameters, skin conductance level, and breath rate. By means of statistical testing and a self-optimizing logistic regression, we identified the most important biosignal vital signs. Fifteen biosignal vital signs related to ventricular repolarization variability, blood pressure, skin conductance, and respiration showed significant results. The logistic regression converged with QT variability index, left ventricular work index, earlobe pulse arrival time, skin conductance level, rise time and number of skin conductance responses, breath rate, and breath rate variability (F1 = 0.82). Self-assessment measures indicated successful stress induction. α-amylase and cortisol showed effect sizes of -0.78 and 0.55, respectively. In summary, the hypothalamic-pituitary-adrenocortical axis and sympathetic nervous system were successfully activated. Our findings facilitate a coherent and integrative understanding of the assessment of the stress response and help to align applications and future research concerning acute mental stress
    corecore